Transmural cellular damage and blood flow distribution in early ischemia in pig hearts.
نویسندگان
چکیده
Transmural histological changes were determined morphometrically in the left ventricular free wall of 20 pigs after ligation of distal left anterior descending coronary artery for 10, 20, 40, and 120 minutes. Hemodynamics were recorded and regional blood flow distribution was measured in the ischemic zone. Coronary occlusion produced regional transmural ischemia without producing significant systemic hemodynamic change. The microsphere blood flow technique revealed that blood flow was less than 0.05 ml/min per g in all layers of the ischemic zone, i.e., inner, middle, and outer thirds. Ischemic cellular damage was classified and quantified from grade 0 to grade 5 (0 being normal and 5 being the most severe damage) with light microscopy and confirmed by electron microscopy. Layers of 200 micrometers immediately beneath the endocardium and epicardium showed minimal ischemic damage of less than grade 1.4 regardless of duration of ischemia in all hearts. In the ischemic left ventricular wall, except for the above layers, a definite transmural gradient of the cellular damage existed from the inner third (grade 2.3 +/- 0.1) to the outer third (grade 1.3 +/- 0.2) at 20 minutes of ischemia and at 40 minutes of ischemia (grades 3.6 +/- 0.1 and 1.9 +/- 0.3, respectively). The transmural ischemic damage gradient disappeared at 120 minutes of ischemia, where the inner and outer third ischemic grades were both 5.0 +/- 0.1. The data suggest that the limited ischemic damage which occurs in the few cell layers beneath endocardium and epicardium may be explained by regional collateral blood flow. An early ischemic damage wavefront phenomenon does exist in the pig myocardium and is independent of myocardial blood flow and its distribution. The transmural cell damage gradient may be the result of transmural gradients of wall stress and intramyocardial pressure in vivo. Therefore, it appears that factors other than blood flow are the major determinants of ischemic cellular damage in the left ventricular wall of hearts lacking a collateral blood supply.
منابع مشابه
The Role of Nitric Oxide and Prostaglandins in the Effect of Adenosine on Contractility, Heart Rate and Coronary Blood Flow in Guinea Pig Isolated Heart
It is a well-established fact that adenosine and its receptor subtypes (A 1 and A ) are involved in changes of contractility, heart rate and coronary blood flow (CBF) under different circumstances. This study was conducted to evaluate the role of nitric oxide and prostaglandins in development of these changes. For this purpose, Nitro-L-Arginine methyl ester (L-NAME), and indomethacin as inhibit...
متن کاملEffects of normobaric hyperoxia pretreatment on ischemia-reperfusion injury in regional ischemia model of isolated rat heart
Abstract Introduction: Resent studies have been shown beneficial effects of hyperoxia pretreatment against ischemia-reperfusion injury in different organs. The aim of the present study was to investigate early and late effects of normobaric hyperoxia (≥95% O2) pretreatment on ischemia-reperfusion injuries in isolated rat hearts. Methods: Following 60 and 180 minutes of hyperoxia, rat hearts w...
متن کاملAltered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning.
Altered expression of mitochondrial electron transport proteins has been shown in early preconditioned myocardial tissue. We wished to determine whether these alterations persist in the Second Window of Protection (SWOP) and if so, whether a favorable energetic state is facilitated during subsequent ischemia. Fourteen pigs underwent a SWOP protocol with ten 2-minute balloon inflations in the LA...
متن کاملUniformity of transmural perfusion in anesthetized dogs with maximally dilated coronary circulations.
In 14 beating hearts, coronary blood flow was measured electromagnetically in either the left circumflex or the left anterior descending coronary artery, and regional myocardial blood flow was computed from tissue uptake of 7-10^ radioactive microspheres. Metabolic dilation of the coronary circulation was induced by occluding the coronary artery for 10 or 90 seconds, and pharmacologic dilation ...
متن کاملEffect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat
Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 51 6 شماره
صفحات -
تاریخ انتشار 1982